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Abstract

The genus Alphavirus harbours mostly insect-transmitted viruses that cause severe disease in humans, livestock and wild-
life. Thus far, only three alphaviruses with a host range restricted to insects have been found in mosquitoes from the Old 
World, namely Eilat virus (EILV), Taï Forest alphavirus (TALV) and Mwinilunga alphavirus (MWAV). In this study, we found a 
novel alphavirus in one Culex declarator mosquito sampled in Panama. The virus was isolated in C6/36 mosquito cells, and 
full genome sequencing revealed an 11 468 nt long genome with maximum pairwise nucleotide identity of 62.7 % to Sindbis 
virus. Phylogenetic analyses placed the virus as a solitary deep rooting lineage in a basal relationship to the Western equine 
encephalitis antigenic complex and to the clade comprising EILV, TALV and MWAV, indicating the detection of a novel alphavirus, 
tentatively named Agua Salud alphavirus (ASALV). No growth of ASALV was detected in vertebrate cell lines, including cell lines 
derived from ectothermic animals, and replication of ASALV was strongly impaired above 31 °C, suggesting that ASALV repre-
sents the first insect-restricted alphavirus of the New World.

InTRoduCTIon
The genus Alphavirus (family Togaviridae) includes 31 
approved virus species names [1] and two putative additional 
species that have been recently described and await ratification 
by the International Committee on Virus Taxonomy (ICTV) 
[2, 3]. Alphaviruses are mostly mosquito-borne viruses that 
can cause severe diseases in humans, livestock and wildlife. 
Their host range includes mammals, birds, reptiles, amphib-
ians and fish. Old World alphaviruses, such as chikungunya 
virus (CHIKV), can cause acute febrile illness with arthralgia 
while New World alphaviruses, such as Western equine 
encephalitis virus (WEEV), are neuroinvasive and can cause 
encephalitis [4, 5]. The currently approved alphaviruses form 
11 serological complexes that group accordingly in phyloge-
netic analyses [1].

The alphavirus genome consists of single-stranded, positive-
sense RNA encoding two ORFs for non-structural proteins 
(NSPs) and structural proteins (SPs), respectively [1]. The 
ORFs are framed by untranslated regions (UTRs). The 
3′-UTR of most alphaviruses contains repeated sequence 
elements (RSEs) that seem to be important for the successful 
infection of insect vectors [6–8]. An exception is the group 
of salmonid alphaviruses that have short 3′-UTRs without 
RSEs [9]. These viruses have no known insect vector and 
were placed in a basal phylogenetic position to all known 
alphaviruses, suggesting an aquatic origin of the genus [10].

In addition to the vertebrate-infecting groups of mosquito-
borne alphaviruses and aquatic alphaviruses, another 
group of alphaviruses, which is restricted in its host range 
to mosquitoes, was discovered in recent years. The group 
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contains three insect-restricted alphaviruses that have been 
detected in mosquitoes from the Old World [2, 3, 11]. These 
viruses, Eilat virus (EILV), Taï Forest alphavirus (TALV) and 
Mwinilunga alphavirus (MWAV), form a monophyletic sister 
clade to the WEE complex [3, 11]. TALV and MWAV could 
not be isolated in cell culture. However, EILV was isolated in 
cell culture from infected mosquitoes but an insect-restricted 
virus (Negev virus) of the unclassified group of negeviruses 
was also present in the same cell culture sample [11]. A 
reverse genetic system of EILV was established to separate 
EILV from the negevirus and was used for studies on host 
range restriction [11].

In contrast to insect-restricted viruses of other families, 
insect-restricted alphaviruses are rarely detected in mosqui-
toes and show very low prevalence rates in mosquito popula-
tions [2, 12]. In addition, screenings of diverse invertebrates 
for RNA viruses revealed no novel alphaviruses [13, 14]. The 
objective of this study was to assess the diversity of alphavi-
ruses in mosquitoes of the New World using mosquitoes 
collected in forested areas of the Panama Canal Zone, Panama.

METHodS
Mosquito collection
In total, 13 806 mosquitoes were sampled in the area of the 
Panama Canal Zone, Central Panama, in 2013 and 2014. 
Details on mosquito sampling and identification will be 
described in another publication.

RT-PCR screening
Mosquitoes were homogenized individually in 500 µl Leibo-
vitz’s L-15 medium (Gibco – Thermo Fisher Scientific) 
using ceramic beads and a SpeedMill Plus (Analytik Jena). 
Stainless steel beads were used for the homogenization of 
Culex mosquitoes. In total, 1414 pools containing five to 
11 mosquitoes were generated according to species and 
sampling location by combining 100 µl cleared supernatant of 
individual mosquito homogenates. RNA was extracted from 
pooled supernatants using the MagNA Pure 96 Instrument 
with the MagNA Pure 96 DNA and Viral NA Small Volume 
Kit (Roche Diagnostics). SuperScript III reverse transcriptase 
(Invitrogen – Thermo Fisher Scientific) was used for cDNA 
synthesis according to the manufacturer’s instructions. All 
pools were screened for alphaviruses with a generic RT-PCR 
as previously described [2]. For PCR-positive pools, RNA 
was extracted from homogenates of individual mosquitoes 
using the QIAamp Viral RNA Mini Kit (Qiagen). cDNA was 
synthesized and samples were tested for viruses by PCR as 
described above.

Virus isolation and plaque purification
The homogenate of mosquito pool MP416 was used for 
primary virus isolation in C6/36 and Vero cells [15]. Briefly, 
the supernatant of the mosquito suspension was filtrated 
through a 0.45 µm filter and cells seeded in 24-well plates 
were infected with 100 µl (F) and 10 µl (F10) of the suspen-
sion. Seven days post-infection (dpi) 100 µl of the supernatant 

was passaged on fresh cells. This procedure was repeated four 
times. Cells were observed daily for signs of cytopathic effects 
(CPEs). A virus stock was generated from the second passage 
of MP416-F10 and harvested 6 dpi. Agua Salud alphavirus 
(ASALV) was plaque-purified from this stock using a plaque 
assay in C6/36 cells as described previously [16]. Then, 1 ml of 
the serially diluted virus stock was used to infect the cells and 
after 1 h the inoculum was replaced by the overlay. Plaques 
were picked 7 dpi using a pipette tip, transferred to fresh 
C6/36 cells and incubated for 3 days. This was repeated twice 
with a reduction of the plaque assay incubation time to 6 days. 
A plaque-purified stock was generated (hereafter named 
ASALV-PP) and the virus titre was determined by a plaque 
assay as described above. Deep sequencing was performed to 
verify the purity of the ASALV-PP stock.

Cell lines
The two Aedes albopictus cell lines C6/36 (ECACC 89051705) 
and U4.4 (obtained from the Radboud Institute for Molecular 
Life Sciences, Nijmegen, The Netherlands) were used for 
growth kinetics. C6/36 cells were cultivated in L-15 medium 
with 5 % FCS (Biochrom – Merck KGaA) and 1 % l-glutamine 
(Gibco – Thermo Fisher Scientific). U4.4 cells were cultivated 
in L-15 medium with 20 % FCS, 2 % Tryptose Phosphate Broth 
(Gibco – Thermo Fisher Scientific), 1 % Non-Essential Amino 
Acids (NEAA) (Gibco – Thermo Fisher Scientific) and 1 % 
l-glutamine. Both cell lines were incubated at 28 °C without 
CO2. The three fish cell lines BF-2 (Lepomis macrochirus – 
CCLV-RIE 290), CHSE-214 (Oncorhynchus tshawytscha 
– CCLV-RIE 1104) and FHM (Pimephales promelas – CCLV-
RIE 57) were obtained from the Friedrich-Loeffler-Institute 
(Greifswald, Germany). BF-2 cells were cultivated in minimal 
essential medium (MEM) with Hanks’ salt (Gibco – Thermo 
Fisher Scientific) with 10 % FCS and 850 mg NaHCO3 l

−1 
(Gibco – Thermo Fisher Scientific). CHSE-214 cells were 
cultivated in MEM with Earle’s salt (Gibco – Thermo Fisher 
Scientific) with 10 % FCS, 1 % NEAA and 120 mg sodium 
pyruvate l−1 (Sigma-Aldrich – Merck KGaA). FHM cells were 
cultivated in MEM with Hanks’ salt with 10 % FCS and 850 mg 
NaHCO3 l

−1 . The snake cell line VH2 (Daboia russelii – GCC 
90102539) was cultivated in MEM with Hanks’ salt with 10 % 
heat-inactivated FCS, 1 % l-glutamine and 1 % NEAA. The 
frog cell line ICR-2A (Rana pipiens – HPACC 89072615) was 
cultivated in L-15 medium with 40 % distilled water, 10 % FCS 
and 1 % l-glutamine. VH2 and FHM cells were incubated at 
28 °C with and without CO2, respectively. The ICR-2A, BF-2 
and CHSE-214 lines were incubated at room temperature.

Growth kinetics and infection of vertebrate cell 
lines
All infections were performed with ASALV-PP in duplicate. 
To measure the amount of viral genome copies, RNA was 
extracted from cell culture supernatant using the NucleoSpin 
RNA Virus kit (Macherey-Nagel), cDNA was synthesized 
as described above and a specific quantitative RT-PCR was 
established (MP416-ASALV-TM-F, 5′- CCGT ACTC GAAA 
CAGA CATTGC-3′; MP416-ASALV-TM-R, 5′- TCGT CAAC 
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GCCT AGAT CCTCTA-3′; MP416-ASALV-TM, 5′−6-FAM/
ACAAATCCC/ZEN/AGGACGACTCG/Iowa Black FQ-3′). 
One day before infection of C6/36 and U4.4 cells, 2.5×105 cells 
per well were seeded in 24-well plates. Cells were infected 
at an m.o.i. of 0.1 and 0.01 in 300 µl medium without addi-
tives and washed three times with 1 ml PBS and once with 
1 ml medium with additives after 1 h of incubation at 28 °C. 
In total, 1 ml medium with additives was added and 50 µl 
(C6/36) or 75 µl (U4.4) of supernatant was taken for RNA 
extraction. Samples were taken every 6 h for 48 h and after 
72 h (C6/36) or every 24 h for 3 days (U4.4). C6/36 cells were 
incubated at 28–32 °C to assess the temperature sensitivity of 
ASALV as described previously [17]. Vertebrate cell lines were 
inoculated with ASALV to analyse the in vitro host range. 
BF-2, CHSE-214, FHM, ICR-2A and VH2 cells were seeded 
1 day before infection (1×105 per 24-well) and infected at an 
m.o.i. of 1 in 300 µl medium without additives. After 1 h of 
incubation, 700 µl medium with additives was added and 75 µl 
supernatant was taken for RNA extraction. The supernatant 
was passaged weekly for four passages and an aliquot of the 
supernatant was taken before passaging.

Genome sequencing
For deep sequencing, RNA from infectious cell culture 
supernatants of the second passage of MP416-F10 (ASALV 
strain PA-2013-MP416) and of the plaque-purified stock 
ASALV-PP were used. cDNA synthesis and sequencing with 
the MiSeq desktop sequencer (Illumina) was performed as 
described previously [2]. Genome ends of ASALV strain 
PA-2013-MP416 were amplified using the 3′ and 5′ RACE 
System for Rapid Amplification of cDNA Ends (Ther-
moFisher Scientific) and PCR products were sequenced by 
Sanger sequencing (Microsynth).

Genomic and phylogenetic analyses
All sequences were assembled and analysed in Geneious R9.1.8 
[18]. ASALV genome analyses were performed based on the 
full genome sequence of ASALV strain PA-2013-MP416. For 
phylogenetic analyses, nucleotide sequences of the structural 
protein ORF encoding the E2, 6K and E1 proteins and the 
non-structural protein ORF (nsP1-nsP4) excluding parts of 
nsP3 of all established alphavirus species, TALV, MWAV and 
ASALV, were aligned by a MAFFT-E v7.308 [19] translational 
alignment in Geneious. An optimized maximum-likelihood 
phylogenetic tree with the GTR substitution model and 
1000 bootstrap replicates was calculated using PhyML as 
implemented in Geneious [20]. The trees were rooted to the 
midpoint.

Small RnA library preparation and analysis
U4.4 cells were cultured as described previously [21], and 
were seeded at a density of 2×106 cells per well in six-well 
plates and infected the next day with ASALV at an m.o.i. of 
0.1. The cells were harvested for total RNA isolation at 72 hpi 
in RNA-Solv reagent (Omega Biotek R630-02). Small RNA 
libraries were prepared from 1 µg of total RNA using the 
NEBNext Multiplex Small RNA Library Prep Kit for Illumina 

(NEB E7560S). The amplified libraries were size selected 
on a 6 % acrylamide/1× TBE gel and quantified using the 
Agilent 2100 Bioanalyzer System, and pooled libraries were 
sequenced on an Illumina HiSeq4000 machine by Plateforme 
GenomEast. Small RNA reads were mapped to the ASALV 
genome (ASALV-PP) using Bowtie (Galaxy Tool Version 1.1.2 
[22]) allowing for one mismatch and the genome distribution 
was obtained by plotting the 5′ end position of the ASALV 
mapping reads on the viral genome. Reads were normalized 
to total library size (reads per million).

Accession numbers
The complete genome sequence of ASALV strain 
PA-2013-MP416 was assigned GenBank accession number 
MK959114. The complete coding sequence of ASALV-PP was 
assigned GenBank accession number MK959115. The small 
RNA sequencing data were deposited at the Sequence Reads 
Archive with accession number PRJNA559096.

RESuLTS
detection of a novel alphavirus
To analyse the genetic diversity of alphaviruses in mosquitoes 
from the New World, we tested 13 806 mosquitoes originating 
from sylvatic habitats in Panama. Samples were combined 
into 1414 pools and tested with a generic RT-PCR [2]. One 
pool (MP416), consisting of 10 Culex declarator mosquitoes 
captured in a forest fragment surrounded by agriculture, 
contained a sequence showing 75 % nucleotide identity to 
TALV, suggesting the detection of a novel alphavirus. The 
virus was tentatively named Agua Salud alphavirus (ASALV). 
Testing of the individual mosquitoes from pool MP416 
revealed only one ASALV-positive mosquito (M9506). This 
corresponds to a prevalence of 0.00724 %.

Virus isolation and purification
ASALV was isolated in C6/36 cells by two approaches, either 
using undiluted mosquito homogenate (MP416-F) or a 1 : 10 
dilution (MP416-F10). MP416-F induced a strong CPE after 
the second cell culture passage with dead and aggregated cells 
3 dpi (Fig. 1a right panel). MP416-F10 induced a weaker CPE 
with reduced cell growth and rounded or stretched cells 3 dpi 
(Fig. 1a middle panel). Both supernatants were positive for 
ASALV by RT-PCR. Due to the observed CPE differences 
between the two isolates, the supernatants were further tested 
for other viruses. A virus with 99 % nucleotide identity to 
the negevirus Wallerfield virus (WALV) [23] was detected 
in the supernatant of MP416-F but not in MP416-F10. 
Negeviruses are fast growing in cell culture and induce strong 
CPEs similar to that observed for MP416-F [24]. ASALV was 
thus plaque-purified from the third passage of MP416-F10 
(hereafter named ASALV-PP). ASALV-PP induced distinct, 
medium-sized plaques in C6/36 cells 6 dpi (Fig. 1b) and deep 
sequencing of infectious cell culture supernatant confirmed a 
pure ASALV stock with no other viruses present. ASALV-PP 
showed 99.97 % pairwise nucleotide identity to the wild-type 
strain, corresponding to four single nucleotide exchanges. 
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Three of these exchanges led to amino acid changes, two in 
nsP2 (I597V and A627T) and one in nsP4 (V295I).

ASALV genome analysis
The complete genome of ASALV consisted of 11 468 nt and 
showed a typical alphavirus genome organization including 
conserved sequence elements (CSEs) and cleavage sites 
(Fig. 2a). ASALV showed a maximal pairwise nucleotide iden-
tity of 62.7 % to Sindbis virus (SINV). Pairwise comparison 
of the NSP- and SP-ORFs yielded 66.5 and 52.9 % maximal 
amino acid identity to Whataroa virus (WHATV), respec-
tively, a mosquito-borne alphavirus from New Zealand. 
Pairwise protein identities between ASALV and other 
alphaviruses are shown in Supplementary file 1 (available in 
the online version of this article). According to the species 
demarcation criteria for alphaviruses of the ICTV, alphavi-
ruses belonging to different species show in most cases more 
than 10 % divergence in their amino acid sequences of the 
complete coding regions, although species demarcation is 
based on a combination of genetic and biological character-
istics such as differences in virulence, host or mosquito vector 
usage [1]. ASALV differed by at least 47.1 % in the SP-ORF and 
by at least 33.5 % in the NSP-ORF at the amino acid level from 
other alphaviruses, was detected in a different vector species 

Fig. 2. Genome analyses of ASALV. (a) Schematic illustration of the ASALV genome including motifs and CSEs. The ORFs are indicated in 
blue (NSP) and orange (SP). Amino acid length of the mature peptides and UTR nucleotide length are displayed. (b) MAFFT-E alignment 
of the SRS motif of ASALV, representative alphaviruses and Cordoba virus (NC_034156 – unclassified negevirus [25]). For GenBank 
accession numbers of the alphaviruses see Fig. 3. (c) MAFFT-E alignment of the RSE of ASALV and Cordoba virus.

Fig. 1. Virus isolation. (a) Photographs of mock-infected C6/36 cells 
and cells infected either with filtrated homogenate (MP416-F) or 
filtrated and 1 : 10 diluted homogenate (MP416-F10) 3 dpi. (b) Plaque 
morphology of the plaque-purified strain ASALV-PP in C6/36 cells 6 dpi.
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than other alphaviruses and is unlikely to infect mammalian 
hosts (see below). ASALV is thus proposed to define a novel 
alphavirus species.

The 3′-UTR of ASALV was 339 nt long and contained one 
copy of the short repeated sequence (SRS) motif previously 
described in the 3′-UTRs of TALV and other alphaviruses 
without U-rich regions [2]. The copy of the SRS motif was 
100 % identical to the first copy of Getah virus, a mosquito-
borne alphavirus that is widespread from Eurasia to Australia 
(Fig.  2b). In addition, three copies of a novel RSE were 
detected in the 3′-UTR of ASALV. The novel RSE was not 
found in other alphaviruses but two copies of it were detected 
in the putative 3′-UTR of Cordoba virus, an unclassified 
negevirus [25]. The Cordoba virus RSE copies showed 74–89 
% identity to the three copies of ASALV (Fig. 2c). The 3′-UTR 
of Cordoba virus further contained four copies of the SRS 
motif present in alphaviruses (Fig. 2b). Similar SRS motifs 
were also detected in the 3′-UTRs of other negeviruses within 
the Nelorpivirus group and Santana virus.

Phylogenetic analysis
Maximum-likelihood phylogenetic analyses based on the 
structural polyprotein E2-6K-E1 ORF placed ASALV on a 
long solitary branch in basal position to the WEE complex 
and to the clade comprising the insect-restricted viruses 
TALV, MWAV and EILV from the Old World (Africa and 
Asia) (Fig. 3). ASALV was in apical position to Trocara virus 
(TROV), which was isolated from mosquitoes collected in the 
Amazon Basin in Brazil and Peru, and can infect vertebrate 
cells, mice and hamsters [26]. ASALV was placed at the same 
position in phylogenetic analyses based on the non-structural 
polyprotein ORF (nsP1-nsP4) where ASALV remained basal 
to SINV, WHATV and Aura virus (AURAV) and to the clade 
of the insect-restricted viruses, while WEEV and the related 
recombinant viruses of the WEE complex clustered with 
Eastern equine encephalitis virus (EEEV) (Supplementary 
file 2). The observed phylogenetic distance between ASALV 
and established virus species is in agreement with the genetic 
distance to other alphaviruses and supports the suggestion 
that ASALV might define a new alphavirus species.

Fig. 3. Phylogenetic relationship of ASALV. The phylogenetic tree was inferred based on a MAFFT-E translational alignment of the 
nucleotide sequences of the region of the structural protein ORF encoding the E2, 6K and E1 protein of all established alphavirus species, 
TALV, MWAV and ASALV strain PA-2013-MP416. An optimized maximum-likelihood phylogenetic tree with the GTR substitution model 
and 1000 bootstrap replicates was calculated using PhyML. The tree was rooted to the midpoint. GenBank accession numbers are shown 
next to the virus names. EEE, eastern equine encephalitis; VEE, Venezuelan equine encephalitis; WEE, western equine encephalitis; SF, 
Semliki Forest.
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In vitro host range of ASALV
As ASALV branched between the insect-specific and 
vertebrate-pathogenic alphaviruses, we next analysed the 
in vitro host range. ASALV replicated to high titres 24–48 
hpi in the mosquito cells C6/36 (Fig. 4a) and U4.4 (Fig. 4b). 
Replication kinetics at different temperatures in C6/36 cells 
revealed a temperature-sensitivity of ASALV with delayed 
growth at 31 °C and complete block at 32 °C (Fig. 4c). This 
suggests that ASALV is not able to infect vertebrates with 
body temperatures over 32 °C, such as mammals and birds. 
We further tested the ability of ASALV to infect cell lines 
derived from ectothermic vertebrates (e.g. frogs, snakes and 
fish) with incubation temperatures between 20 and 30 °C. No 
replication was detected in the tested vertebrate cells VH2, 
ICR-2A, FHM, CHSE or BF-2 (Fig. 4d). This was in contrast 
to previous observations for the vertebrate-infecting alphavi-
ruses WEEV, Fort Morgan virus and Highlands J virus, which 
could replicate in VH2 and FHM cells [27]. Infection of Vero 
cells incubated at 30 °C was likewise negative.

Viral small RnA profiles in mosquito cells
To determine if ASALV is targeted by RNAi in mosquito cells, 
we analysed small RNAs in infected U4.4 cells. As expected, 
total small RNA reads showed prominent populations of small 
interfering RNAs (siRNAs) (21 nt), micro RNAs (miRNAs) 
(~22 nt) and piRNAs (25–30 nt) (Fig. 5a). ASALV derived 
reads were almost exclusively 21 nt in length, indicative of 
Dicer-2-dependent biogenesis, and mapped to both the posi-
tive and the negative strand in approximately equal numbers 
(Fig. 5b). These viral siRNAs are distributed across the entire 
genome, with a slightly higher coverage in the first quarter 
of the viral genome (Fig. 5c). In contrast to the viral siRNAs, 
hardly any viral small RNAs in the size range of 25–30 nt were 
produced, indicating that ASALV is not efficiently processed 
into piRNAs (Fig. 5b).

dISCuSSIon
In this study we discovered and characterized a novel 
alphavirus defining a deep rooting lineage in a basal phylo-
genetic relationship to the three insect-restricted alphaviruses 
EILV, MWAV and TALV, and to the WEE complex. ASALV 
differs from arboviruses in the WEE complex by its sensitivity 
to temperatures above 31 °C and the consequential lack of 
a mammalian host. The other insect-restricted alphaviruses 
were detected in Culex pipiens, Culex quinquefasciatus, Culex 
decens and Anopheles coustani mosquitoes, while ASALV was 
found in Culex declarator mosquitoes [2, 3, 11, 28]. Based on 
these genetic and biological characteristics, ASALV probably 
represents a new alphavirus species and represents the first 
insect-restricted alphavirus detected in the New World.

Phylogenetic analyses suggest a marine origin of the genus 
Alphavirus [10]. The basal salmonid alphaviruses have no 
known insect vector and are temperature-sensitive above 
15 °C in cell lines derived from fish and mosquitoes [29, 30]. 
EEEV can infect snakes [31–33] and WEEV and related 
viruses can replicate in reptilian and fish cells, supporting 

Fig. 4. In vitro host range. (a) Growth kinetics of ASALV-PP in C6/36 cells. 
(b) Growth of ASALV-PP in U4.4 cells. (c) Temperature-dependent 
replication of ASALV-PP in C6/36 cells infected with an m.o.i. of 0.1. (d) 
Infection trials with ASALV-PP in cell lines from ectothermic animals 
with an m.o.i. of 1. Each data point represents the mean of duplicates 
with standard deviation.
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the theory of a marine origin of alphaviruses [27]. All insect-
restricted alphaviruses known to date have been found in 
Culex mosquitoes [2, 3, 28], which are known to feed on 
ectothermic hosts [34, 35]. Because ASALV was isolated from 
a Culex declarator mosquito and was temperature-sensitive, 
we infected cell lines derived from an ectothermic host 
(amphibians, reptiles and fish) at low temperatures, but in 
contrast to the related viruses from the WEE complex no virus 
replication was observed, further confirming that ASALV is 
an insect-specific virus.

The presence of RSEs in the 3′-UTR of insect-associated 
alphaviruses and their absence in aquatic alphaviruses may 
help to understand the evolutionary transition from aquatic 
to terrestrial alphaviruses. It has been shown that the RSEs in 
the 3′-UTR of SINV are important for the efficient translation 
of the viral genome in insect cells [6]. In contrast to the insect-
restricted alphaviruses, which contain RSEs, the salmonid 
alphavirus Sleeping Disease Virus has a short 3′-UTR without 
RSEs [9] and insertion of SINV RSEs in the 3′-UTR of Sleeping 
Disease Virus improves the infection of insect cells [6]. Hence, 
the acquisition of RSEs in the 3′-UTR of aquatic alphaviruses 
might have enabled the infection and acquisition of insects 
as hosts [36]. Such a putative host range expansion could 
have occurred through recombination events with related 
invertebrate viruses such as negeviruses [13]. Negeviruses are 
widely distributed in mosquito and sandfly populations from 
Africa, the Americas, Europe and Asia [25]. They belong to 
the alphavirus supergroup and fall into two diverse groups in 
phylogenetic analyses, named Nelorpivirus and Sandewavirus, 
in relationship to segmented plant viruses [24, 25, 37]. Inter-
estingly, the ASALV 3′-UTR contains RSEs, which are also 
found in the 3′-UTR of the unclassified negevirus Cordoba 
virus. ASALV and other alphaviruses further contain an 
SRS motif, which is also present in the 3′-UTRs of negevi-
ruses within the Nelorpivirus clade. The presence of similar 
sequence elements in alpha- and negeviruses may represent 
putative ancient sites of recombination. RNA recombination 
occurs in alphaviruses and the first known recombination 
event was between an EEEV-like and a SINV-like virus from 

which WEEV, Highlands J virus and Fort Morgan virus have 
emerged [27, 38]. In addition, alphaviruses are related to 
plant viruses of the families Virgaviridae, Bromoviridae and 
Closteroviridae and it is believed that multiple recombina-
tion events took place during the evolution of the alphavirus 
supergroup [37, 39]. The transfer of functional UTR elements 
through recombination between different viral families was 
also previously described for 3′-UTR cap-independent trans-
lation enhancers in plant viruses [40].

For the infection of mammalian hosts and the evolution of a 
dual-host tropism, additional changes, such as adaptation to 
higher temperatures and immune evasion, were necessary. 
Adaptions of alphaviruses to higher temperatures seem to 
have occurred in the past and the temperature sensitivity of 
alphaviruses is in agreement with the phylogenetic placement. 
The fish-infecting alphaviruses can replicate at temperatures 
up to 15 °C [29] whereas the insect-infecting alphaviruses 
can replicate at temperatures up to 30 °C. ASALV and the 
other insect-restricted alphaviruses could be intermediates 
from a transition of alphaviruses with solely aquatic hosts to 
terrestrial alphaviruses with a dual-host cycle infecting insects 
and vertebrates.

Further support for this hypothesis and multiple independent 
adaptation events to vertebrate hosts are peculiarities of 
AURAV. AURAV is phylogenetically placed apical to the 
insect-restricted viruses and basal to the arboviruses of the 
WEE complex. AURAV was isolated from Culex sp. and Aedes 
serratus mosquitoes captured in Brazil and Argentina and has 
no known vertebrate host [41, 42]. Most vertebrate-adapted 
alphavirus genomes contain an RNA structure, namely 
downstream loop (DLP), which allows eukaryotic transla-
tion initiation factor 2-independent translation initiation if 
dsRNA-activated protein kinase R (PKR) activation occurs 
in infected vertebrate cells. In contrast, AURAV has a subop-
timal DLP structure and is only able to replicate in BHK cells, 
which express low levels of PKR, or in PKR knockout cells, 
indicating an incomplete adaptation to vertebrate hosts [43]. 
Interestingly, the observed structural differences in the DLP 

Fig. 5. Small RNA responses targeting ASALV in U4.4 cells. (a) Total number of small RNA reads in libraries from ASALV-infected U4.4 
cells. (b) Size distribution of ASALV-derived small RNAs mapping to the viral positive (red) or negative (blue) RNA strand. (c) Location of 
ASALV-derived 21 nt siRNAs across the genome. Small RNAs were mapped to the viral genome allowing one mismatch and normalized 
to library size (reads per million, RPM). The 5′ positions of viral siRNAs are plotted.
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probably derived from independent introduction events in 
the clades of SINV, Semliki Forest virus and EEEV [43].

Viruses may be targeted by two small RNA pathways in 
mosquitoes, the siRNA/RNAi pathway and the piRNA 
pathway [44], of which the former is considered a major 
antiviral defence response. We find that ASALV viral RNA is 
processed into siRNAs, but not piRNAs. This is unexpected as 
viral piRNAs are produced upon infection of mosquito cells 
with other alphaviruses such as Chikungunya, Sindbis and 
Semliki Forest virus [21, 45–47]. The majority of viral piRNAs 
in these infections derive from the viral positive strand in 
the region encoding the subgenomic RNA, suggesting that 
this RNA is a major substrate for viral piRNA biogenesis. 
While ASALV also produces a subgenomic RNA, our data 
indicate that this is not sufficient to trigger efficient viral 
piRNA production. Together, these results suggest that double 
stranded replication intermediates from ASALV are subject to 
Dicer-2 cleavage, efficiently producing viral siRNAs that can 
trigger an RNAi response.

Thus far, only insect-specific alphaviruses in basal phyloge-
netic relationship to the WEE complex have been detected, 
but additional insect-specific alphaviruses related to other 
serological complexes might be discovered in the future. 
ASALV and additional alphavirus isolates with restricted host 
range might help to understand the evolution of dual-host 
tropism in the genus Alphavirus.
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